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SUMMARY 

The results of a number of papers dealing with the isolation of the ‘C’ terms of 
the VAN DEEMTER equation and with the interpretation of the respective results led, 
in many cases, to discrepancies that could not be explained satisfactorily in virtue of 
the classicalv~~ DEEMTER or GOLAY’S equations, Abandoning the principle of the in- 
dependence of the processes controlling the interphase mass transfer in a chromato- 
graphic column led to a modified HETP equation, the qualitative predictions of which 
are in very good agreement with the experimental results. 

INTRODUCTION 

The very useful concept of the additivity of the partial resistances to the mass 
transfer between two phases, representing one of the basic presuppositions in 
WHITMAN’S film theoryi, was applied to gas-liquid chromatography (GLC) as early 
as in the pioneer papers by LAPIIXJS AND AMUNDSON~ and by VAN DEEMTER et ak3s4. 
The analytical substantiation of the above concept was later5 seen in the results of 
GOLAY’S solution of the equation of the solute mass balance in a capillary columnO. 

From the viewpoint of the stochastic theories on the growth of the variance of 
the chromatographic zone (c.f. e.,. 0 GIDDINGS’), the presupposition of the above addi- 
tivity is equivalent to an assumption on the independence between the processes 
taking place in the mass transfer within both phases in the chromatographic column. 

The existence of a number of papers dealing with the isolation of the ‘C’ terms 
in the Van Deemter equation has been a practical consequence of the conviction about 
the applicability of the above additivity principle. To this effect, changes have been 
utilized of the HETP brought about by changes in the retentive capacity”, by changes 
in the colurim length at a constant column inlet or column outlet pressureD, by changes 
of the pressure within the column of a given length, or by varying the kind of carrier 
gasi”-is, As long as the authors of the individual papers limited themselves to finding 
such pairs of the CC and CL values that complied with the measured HETP and flow 
velocity values, their efforts were always successful. However, the attempts at a 
further qualitative or even quantitative interpretation of the values obtained often 
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led to paradox results. For instance, PIZRRETT AND PURNELL~O found a very significant 
dependence of the gas-phase mass-transfer term (Co) on the loading of the support by 
the stationary phase (within a range of 0.5~zo wt. O/ the value of the Co term arose 
about 80 %). Further, in the paper by GIDDINGS et al. o devoted, besides other objec- 
tives, to the correlation of the data measured on columns of different lengths in terms 
of ‘the equation k = (B’/P,ti, + C’oP,zc,)f, + CL~CJ~, one can notice a significant 
decrease of the CL coefficient with decreasing column length (mean column pressure). 
Similar difficulties were encountered also by HAZELDEAN AND SCOTT~~ in testing the 
GOLAY~ and KHANS' equations by working with nylon capillaries at various absolute 
pressures. SAHA AND GIDIJINGS 18 found a correlation between the diameter of the 
column packing particles aiid’the CI; coefficient. Finally, NOVAK et al.lD ascertained an 
expressive growth of the CL coefficient upon raising the absolute column pressure, 
while the Co’ coefficient (Co = CG’P) was decreasing at the same time. 

THEORETICAL 

The simplest analytical model for describing the mass transfer between the 
phases in the chromatographic column is indubitably an idealized capillary column 
with the walls coated by a homogeneous film of the stationary phase. In such a column, 
one may define two continuous concentration fields of the solute in both phases. When 
neglecting the longitudinal diffusion and, further, assuming the axial symmetry of the 
concentration fields and laminar flow, it is then possible to write for the solute mass 
balance in the phases 

(1) 

and 

ad 
at= DL ( 

aw I ad 
s.+ ;ar > 

(2) 

The initial conditions may be formulated by the equations 

c(o,y,z) = C’(O,Y,Z) = 0 (3) 

The boundary condition determining the concentration signal at the column inlet in. a 
case of elution analysis can be expressed by 

c(t,r,o) = co&t) (4) 

The boundary condition (eqn. 4) has to be further supplemented by four equations, 
describing the radial concentration distribution at the outsets. One of these equations 
follows from the above postulated symmetry of the concentration field in the mobile 
phase, 

the second one.from the impermeability of the capillary wall for the solute 

g (t,al,z) = O (6) 
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and the remaining two boundary conditions describe the properties of both concen- 
tration fields at the phase interface. Let us suppose instantaneous equilibration at the 
iriterface, then 

c’( l&,2) = /zc( I,c&,Z) (7) 

Further, let us suppose that there may occur no solute accumulation at the interface, 
then 

E,v, ac (l,a,z) 
ULVC a, 

= g (t,a.,z) (8) 

The radial. concentration distribution complyingwith conditionss-8 is shown schemat- 
ically in Fig. I. 

Gas \ Liquid Solid 

concentration clistribution in an iclcalizccl cnpillnry column. tgcc,/ 

1-8 may be simplified, at least formally, by introducing the 

0 a 

Fig. I. Sclicmc of the radial 
tgcc, = Dcv/.lDr,uc. 

The system of eqns, 
following substitutions: 

c = c/Q) C’ = dJc0 

T = t11,/1 L = 212 R = Y/a Q - Y/(/f 

P = D&fll.,ag Y = D~z~‘1l.~c~f ‘L R = DG/.DL 

;’ = npf A 2v&r, 

This results in a system of dimensionless equations 

(9, 101 

(11-14) 

(15-17) 

(IS) 

8C’ asct I ac’ 
-gy = Y ( yQy -- 

+ Q aQ ) 

C(o,R,L) - C’(o,Q,L) = o 

C(T,R,o) = 6(T) 

(1a) 

(24 

(3d 

(4N 
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2 (T,o,L) = 0 

Z(T,E + 125) = 0 

(54 

(64 

C’( T,&L) = kC(T,I,L) (7a) 

T g (T,I,L) = g (T,E,L) (84 

T 22 0. OSRSI, frraz5E+I# ObL$I 

The analytical solution of the parabolic system Ia-8a has not yet been ,found. 
However, it may easily be proved by applying the theory of physical si.milarity (cj’. 
WICAR~O) to the capillary columns obeying the system Ia-8a that the number of the 
theoretical plates of the idealized capillary column is a function of all the variable 
parameters occurring in the system Ia-8a except the functionsc andC’ themselves and 

. the variables T, R, Q, and L. Hence, there holds 
. 

N = N(/%yJJG) (19) 

The individual criterions and simplexes occurring in the above symbolic equa- 
tion have different roles; the values of p and y characterize the maximum attainable 
mass-transfer rates, under given conditions, in the individual phases. For the gaseous 
phase and for the criterion p, the above statement may be documented for instance 
by the results of TAYLOR~~ and ARIP, On the other hand, the quantities 6, k, and E, 
occurring in the boundary conditions, signify obviously certain limitations for the 
above maximum values. 

From this viewpoint, the condition 8a is particularly important; if no solute 
accumulation is to occur at the phase interface, the rates of the mass fluses in both 
phases must be mutually coordinated. Therefore, any limitation in the possibilities of 
the mass transfer in the stationary phase (a decrease of the y value caused, for instance, 
by increasing the +) will inevitably also induce a decrease in the mass-transfer rate in 
the mobile phase, regardless the fact that the /3 .value itself remains unchanged. Simi- 
larly, a decrease of the p value brings about a decrease in the mass transfer in the 
stationary phase with the y value remaining unchanged. 

When introducing the presupposition of quasi-ideality (long-time approxima- 
tion) of the chromatographic process into our consideration, which presupposition is 
common in the theory of gas chromatography, one may look for a direct relation be- 
tween the values of p, y, and the variance of the concentration band caused by a finite 
rate of the interphase mass transfer. 

The classical GOLAY theory which leads, in its consequences, to the mutual in- 
dependence of the mass-transfer processes taking place in both phases expresses the 
final variance by the sum of the partial variances: 

H = F~(k)lf/t? + F2(lz)l/y = &/Z + u1;2/2 (20) 

Hence, one may easily derive for the individual variances: 

cr$ = 
Fl(k)aV 

uo, 
F2(/z)df2Z 

DC 
at,2 = ---- ,,Jo 

DL 
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Now, let us assume, in compliance with eqn. Sa, that the processes effective in the 

mass transfer in both phases are interdependent; employing the elementary theory of 

probability, one may easily find a combination law for the resultant variance* : 

- 

?Lo + 2/)GLZCo J a2df2 
.t;l(h)l;z(h) - 

DGnL 
(22) 

In accordance with eqn. 19, the correlation coefficient pi& may be regarded as an 

undefined function of exclusively the quantities 12, 8, and &, i.e., 

&‘GL = pGL(lz,fi,& (23) 

Without the knowledge of the solution of the system of eqns. ra-Sa, the actual shape 

of the function pc~ expressed by eqn. 23 may be obtained only experimentally. 

Eqn. 22 may be written, referring to the conventional formal notation, to read: 

H= (CG + CL + 2~GL~~GcL)2~0 (24) 

or, after introducing the mean pressure and the mean flow velocity to respect, at least 

approximately, the mobile phase compressibility, 
-- 

fi= (CL + ct+ + 2&P)&,CG+)9,7 (25) 

DISCUSSION AND CONCLUSIONS 

First, let us go into the two fundamental phenomenological theories of gas- 

liquid chromatography, VAN DEEMTER’S theory and the GOLAY theory of the capillary 

column, and investigate the effect of that critical step in them which leads to the 

principle of the additivity of the partial resistances. 

c 

Gas 

_ 

dG 
-L - 
a 

1 C 

Liquid Solid 

\ 

Fig. 2. Rnclial concentration distribution nccorcling to the film theory. dc;,d~, = cffcctivc thiclcncsses 
of the _qas ancl liquid cliff&on films, respectively. 

l A sitnil& proccclurc has been usccl by JONICS?~ for combining the vnrinnccs proclucccl in the 
stationary ancl mobile part of the gaseous phnsc. 
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.: ..The VAN ,DEEMTER theory assumes the radial concentration distribution in 
accordance ‘with ,the film theory (Fig. 2). The concentrations c* and c*’ at the phase 
‘interface are colligated with each other by the relation c*‘ = kc*; there holds for both 
partial mass-transfer coefficients 

‘, 
‘. IfKoa = I/Ka -t I/hKL (26) 

Hence, the presupposition of the additivity of the partial resistances to mass transfer 
in both phases has been introduced in the very description of the model of the mass 
transfer at the interface. 

Gas 

C’ *I*) 

\ 

1 

dl - 

Llquid Solid 

C’ 

:I?&. 3. R&dial conccntrati& distribution according to GOLAY'S theory. dr, = effective thickness of 
the liquid diffusion film, tga = (ICLU/~DG) (c’ - c’*). 

,.The GOLAY model is substantially more involved ; the radial concentration 
distribution presupposed in this model is shown schematically in Fig. 3. A hybrid 
model is apparently at stake here - the rate of the mass transfer in the mobile phase 
obeys the equation of diffusion while the rate of the mass, transfer in the liquid phase is 
‘described, similarly ai in VAN DEEMTER’S model, by means @*the partial mass-transfer 
coefficient KL. ,At the phase interface, two boundaryccn~ditions apply. One of them 
&ligates the.concentrations in the mobile and in the stat&@& phases at the interface 
by the relation c’* = Izc*, the other one describes thk~&&%uKes at the interface by 
the Fourier, relation .:>, ,:, ::‘ ;,; i’;;‘” 4 ‘* **. .:’ 

2 D+$ (t,a,z) = KL[C'- Rc(t,a,z)] 

', 
(27) 

which is analogous to the condition described by eqn. 8. Hence, the exact solution of 
,the GOLAY model ,would have to lead to an interdependence between both partial pro- 
cesses in, .the mass transfer. The resultant independence of Co and CL is a consequence 
of the simplification of the model during the solution. The decisive step is undoubtedly 
the substitution, of ,eqn. 21 into eqn. .r7a (in GOLAY’S notation) which implies the con- 
centration field in the mobile phase to be independent of the rate of the mass transfer 
in ,thk stationary phase. 

I,. 
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The concept of the mutual dependence of the mass transfer in both phases may 
easily be applied also to packed columns. Let us turn back to eqn. zz, supplemented 
now by the terms accounting for the variances due to longitudinal and eddy diffusion, 

I-2 = A + B’fPli + CG’Fli + CLli + *p~L(F)~cLcQsi (28) 

and compare it with the classical VAN DEIZMTER equation 

&= -- -- A + B’/Pi& + CG’.h + CL’li (29) 

Both equations may be divided by the average velocity of the mobile phase, 6: 

Fig. 4. Schcn~c of the isolation of the Cl, nncl Cc’ cocfficicnts according to the classical concepts 
(cqn. 2ga). 

In a region of higher flow velocities of the mobile phase, where the plate height is 
dominated by the rate of the interphase solute-transfer, the two first members of the 
right-hand sides in eqns. zSa and zga may be neglected to a good approximation. In 
compliance with the classical eqn. zq, one could easily isolate the CL and Co’ coefficient 

by plotting the ratio fi/G against the mean column pressure F (cf Fig. 4). On the other 

hand, eqn. zSa, when neglecting the dependence of PGL on P (for instance by intro- 

ducing the mean value, pc~, within the given interval of the mean pressure p?, 

renders the curves resulting from the composition of the straight lines fi/fi = Cc;‘F + 

CL and the parabolas &/i7. = zjFZZ J C&o’P (Fig. 5). 
The endeavour to espress the CC’ and CL values from the measured data by the 

classical relation 29 is equivalent to the seeking for the tangent or secant to the curves 
given by eqn. &a. Therefore, the Co’ and CL coefficients obtained from HETP ~lersz~s 
flow velocity data in virtue of the conventional concepts represent some apparent 
values, (CC’) WP and (CL)~~,,. Hence, when calculating with the tangent and neglecting 
the first two members of the right-hand side of eqn. z8a, one obtains 

-‘-= 

(cL)‘tp,> = CL + PGL -hLCG’& (30) 
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Fig# 
P 

,5. Scheme of the isolation of the apparent CL and CC coefficients according to the concept of the 
interdependence between the gas and liquid mass-transfer terms. 

where PO stands for the mean pressure determining the position of the tangent on the 
curve given by eqn. 28a. 

Hence, the obtained apparent value of CL, (C L upp, increases, on a given column, ) - 
with increasing mean pressure PO and with increasing Co’ (increasing gas phase 
diffusion coefficient), which is in conformity with the experimental experience. To 

illustrate the above account, Fig. 6 shows the plots of g/21 against P for octane with 
hydrogen, nitrogen, and argon as the carrier gases. The column was rgo cm long, 
packed with IO wt. YO of Apiezon L on Chezasorb (an equivalent of Chromosorb P) of 
the particle diameter o.oS-0.1 mm and kept at a temperature of 100~. 

CC,) am A 

CC’) app N: 

(CL) app H 
0.0 

Fig. C. Plot of a/12 VBYSUS 7; for octane chrornatographed with A, N,, and I-I, carrier gases, illustrat- 
ing the dependence of the apparent CL on the gas phase diffusion cocfficicnt. 
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The slopes of the tangents to the 
(CG’)a,qh are given by the relation 

RESISTANCESIN GC 437 

curves, rendering the apparent values of CG’, 

(31) 

Thus, the measured value of (C e’) o app rises with increasing values of CL, in compliance 
with the papers by PURNELL AND PERRETT~~, and decreases with increasing PO, as 

found by Nov.4~ et nL.10. 

LIST OF SYMBOLS 

c = solute concentration in the mobile phase, expressed by the mass of solute in a 
unit volume of the empty column 

C) = solute concentration in the stationary phase, expressed in the same units as 
quoted with c ‘.. , 

DC= diffusion coefficient of the solute in the mobile phase 
DL = diffusion coefficient of the solute in the stationary phase 
ato = mobile phase forward flow velocity averaged over the void cross-sectional 

s(t) = 

a= 

al = 

k = 
VG = 

VL = 

df = 
F,(k) = 
q/2) = 

t,r,z = 

area of the column 
Dirac’s delta function 
distance of the gas-liquid interface from the capillary axis 
internal radius of the capillary tube 
partition ratio 
volume of the gaseous phase per unit volume of the empty column 
volume of the liquid phase per unit volume of the empty column 
(effective) thickness of the stationary liquid layer 
(I + 612 + 11h2)/24(1 + /2)2 

k3/6(1 + h)2 

time, radius, and distance coordinates 
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