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SUMMARY

The results of a number of papers dealing with the isolation of the ‘C’ terms of
the VAN DEEMTER equation and with the interpretation of the respective results led,
in many cases, to discrepancies that could not be explained satisfactorily in virtue of
the classical VAN DEEMTER or GOLAY’s equations. Abandoning the principle of the in-
dependence of the processes controlling the interphase mass transfer in a chromato-
graphic column led to a modified HETP equation, the qualitative predictions of which
are in very good agreement with the experimental results. '

INTRODUCTION

The very useful concept of the additivity of the partial resistances to the mass
transfer between two phases, representing one of the basic presuppositions in
WHITMAN's film theory!, was applied to gas-liquid chromatography (GLC) as early
as in the pioneer papers by LAPIDUS AND AMUNDSON? and by VAN DEEMTER e¢f al.?:4.
The analytical substantiation of the above concept was later® seen in the results of
GoLAY’s solution of the equation of the solute mass balance in a capillary column®.

From the viewpoint of the stochastic theories on the growth of the variance of
the chromatographic zone (c.f. e.g. GIDDINGS?), the presupposition of the above addi-
tivity is equivalent to an assumption on the independence between the processes
taking place in the mass transfer within both phases in the chromatographic column.

The existence of a number of papers dealing with the isolation of the ‘C’ terms
in the Van Deemter equation has been a practical consequence of the conviction about
the applicability of the above additivity principle. To this effect, changes have been
utilized of the HETP brought about by changes in the retentive capacity®, by changes
in the column length at a constant column inlet or column outlet pressure?, by changes
of the pressure within the column of a given length, or by varying the kind of carrier
gasl0-15, As long as the authors of the individual papers limited themselves to finding
such pairs of the C¢ and Cy, values that complied with the measured HETP and flow
velocity values, their efforts were always successful. However, the attempts at a
further qualitative or even quantitative interpretation of the values obtained often
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led to paradox results. For instance, PERRETT AND PURNELL?® found a very significant
dependence of the gas-phase mass-transfer term (C¢) on the loading of the support by
the stationary phase (within a range of 0.5-20 wt. % the value of the C¢ term arose
about 80 %). Further, in the paper by GIDDINGS e¢ al.? devoted, besides other objec-
tives, to the correlation of the data measured on columns of different lengths in terms
of ‘the equation A = (B'/Pyu, -+ C'¢Pguy)fy + Cru,f,, one can notice a significant
decrease of the Cg, coefficient with decreasing column length (mean column pressure).
Similar difficulties were encountered also by HAZELDEAN AND ScoOTT?® in testing the
Goray® and KHANY? equations by working with nylon capillaries at various absolute
pressures. SAHA AND GIDDINGS!® found a correlation between the diameter of the
column packing particles and 'the Cp, coefficient. Finally, NovAK et al.}® ascertained an
expressive growth of the C; coefficient upon raising the absolute column pressure,
while the C¢’ coefficient (C¢ = C¢’'P) was decreasing at the same time.

THEORETICAL

The simplest analytical model for describing the mass transfer between the
phases in the chromatographic column is indubitably an idealized capillary column
with the walls coated by a homogeneous film of the stationary phase. In such a column,
one may define two continuous concentration fields of the solute in both phases. When
neglecting the longitudinal diffusion and, further, assuming the axial symmetry of the
concentration fields and laminar flow, it is then possible to write for the solute mass
balance in the phases

oc o2c I oc 2 éc

o= PoGm + 35— (%)% ()
and

oc’ 2%’ 1 oc¢

=05+ 5 %) (2)
The initial conditions may be formulated by the equations

c(o,7,2) = ¢’(0,7,2) = o (3)

The boundary condition determining the concentration signal at the column inlet in a
case of elution analysis can be expressed by

c(t,7,0) = cod(?) (4)

The boundary condition (eqn. 4) has to be further supplemented by four equations,
describing the radial concentration distribution at the outsets. One of these equations
follows from the above postulated symmetry of the concentration field in the mobile
phase,

oc

> (¢,0,2) = 0 (5)

the second one.from the impermeability of the capillary wall for the solute

oc’ y 6
-8_1’—( ;aluz) = 0 ( )
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and the remaining two boundary conditions describe the properties of both concen-
tration fields at the phase interface. Let us suppose instantaneous equilibration at the
interface, then '

c’(ta,z) = ke(t,a,z) (7)
Further, let us suppose that there may occur no solute accumulation at the interface,
then ‘

Dequr oc oc’

e tl ’ == - t: 'y 8

Drog or \1F) = 7y (ba?) (8)

The radial concentration distribution complying with conditions 5-8 is shown schemat-
ically in Fig. 1.

Gas Liquid Solid
c
CI
\ﬁ_
o a a4 r

Fig. 1. Scheme of the radial concentration distribution in an idealized capillary column. tge,/
tgay = Devr/Drve.

The system of eqns. 1-8 may be simplified, at least formally, by introducing the
following substitutions:

C = c¢/co C’ == ¢’[co (9, 10)
T = tue/l L = 2/l R = v[a Q = v[dy (11-14)
B = Dglluea? y = Dplfusds? 6 = Dg/Dg g (15-17)
§ = alds = 2vg/vL (18)

This results in a system of dimensionless equations

eC e2C 1 aC .. acC

7 =0 o+ Far) — R (xa)
eC’ o2C’ 1 9C’

= (o t o) (2
C(o,R,L) = C'(0,Q,L.) = o© (3a)
C(T,R,0) = &(T) (4a)
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a8C

g (Dol =o (5a)
ac’

'a'b—(T,é' +1L)=o0 (6a)
C(T.t L) = kC(T,1,L) (7a)
8& aC ac’

—2-—372—(1‘,1,1.) =20 (T,;,L) (8a)
T zo, osR =TI, E=Q =&+ 1, osL =s1

The analytical solution of the parabolic system ra—8a has not yet been found.
However, it may easily be proved by applying the theory of physical similarity (cf.
W1LAR?0) to the capillary columns obeying the system ra—8a that the number of the
theoretical plates of the idealized capillary column is a function of all the variable
parameters occurring in the system 1a—8a except the functions C and C’ themselves and
.the variables T, R, Q, and L. Hence, there holds

N = N(Bp.0.h.&) ) (19)

The individual criterions and simplexes occurring in the above symbolic equa-
tion have different roles; the values of § and y characterize the maximum attainable
mass-transfer rates, under given conditions, in the individual phases. For the gaseous
phase and for the criterion 3, the above statement may be documented for instance
by the results of TAYLOR?! and ARis22, On the other hand, the quantities §, £, and &,
occurring in the boundary conditions, signify obviously certain limitations for the
above maximum values.

From this viewpoint, the condition 8a is particularly important; if no solute
accumulation is to occur at the phase interface, the rates of the mass fluxes in both
phases must be mutually coordinated. Therefore, any limitation in the possibilities of
the mass transfer in the stationary phase (a decrease of the ¢ value caused, for instance,
by increasing the dy) will inevitably also induce a decrease in the mass-transfer rate in
the mobile phase, regardless the fact that the 8 value itself remains unchanged. Simi-
larly, a decrease of the 8 value brings about a decrease in the mass transfer in the
stationary phase with the y value remaining unchanged.

When introducing the presupposition of quasi-ideality (long-time approxima-
tion) of the chromatographic process into our consideration, which presupposition is
common in the theory of gas chromatography, one may look for a direct relation be-
tween the values of 3, y, and the variance of the concentration band caused by a finite
rate of the interphase mass transfer.

The classical GoLAYy theory which leads, in its consequences, to the mutual in-
dependence of the mass-transfer processes taking place in both phases expresses the
final variance by the sum of the partial variances:

H = Fi(k)I[B + Fa(k)l]y = oc?/l + o2/l (20)
Hence, one may easily derive for the individual variances:
Fy(k)a®l Fa(k)ds2l
og? = —ii—)-)c——'uo. o2 = —-?-(-l-)%f— o (21)

J. Chromatog., 53 (1970) 420—438



GAS AND LIQUID PHASE MASS-TRANSFER RESISTANCES IN GC 433

Now, let us assume, in compliance with eqn. 8a, that the processes effective in the
mass transfer in both phases are interdependent; employing the elementary theory of
probability, one may easily find a combination law for the resultant variance*

H = o2/l = 0¢?/l + or2/l + 2perVogoL/l =

0

dr?
I"l(k) uo -+ Fa(k) B— o 2/)athoJF1 (k) Fa(k) a df (22)

DegDy,

In accordance with eqn. 19, the correlation coefficient pez may be regarded as an
undefined function of exclusively the quantities %, §, and &, <.e.,

peL = per(k.0.8) (23)

Without the knowledge of the solution of the system of egns. ra—8a, the actual shape

of the function pgz expressed by eqn. 23 may be obtained only experimentally.
Eqn. 22 may be written, referring to the conventional formal notation, to read:

H = (Cg + Cr + 2parV CeCr)uo (24)

or, after introducing the mean pressure and the mean flow velocity to respect, at least
approximately, the mobile phase compressibility,

— (CL + Ca'P + 2per(B)VC1Ce'P)a (25)

DISCUSSION AND CONCLUSIONS

FFirst, let us go into the two fundamental phenomenological theories of gas—
liquid chromatography, VAN DEEMTER’s theory and the GoLAY theory of the capillary
column, and investigate the effect of that critical step in them which leads to the
principle of the additivity of the partial resistances.

Gas Liquid Solid
e Ix
c C
cl
C
c #*
9% |9
o a a1 r

Fig. 2. Radial concentration distribution according to the film theory. d¢,dy, = effective thicknesses
of the gas and liquid diffusion films, respectively.

* A similar procedure has been used by JonNrs?? for combining the variances produced in the
stationary and mobile part of the gaseous phasec.
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v The VAN DEEMTDR theory assumes the rad1al concentration distribution in

accorda.nce ‘with the film theory (Fig. 2). The concentrations c* and ¢*’ at the phase

fmterface are colligated with each other by the relation c*' = kc*; there holds for both
part1al mass-transfer coefﬁc1ents :

I/Koa = 1/Kg + 1/kK L (26)

'Hence, the presupposﬁ:mn of the additivity of the partial resistances to mass transfer
in both phases has been introduced in the very description of the model of the mass
: transfer at the 1nterfa.ce

Gas Liquid Solid
el - c'*
cl
R L C
™
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0 . . - E a' a1 r

, ‘lFxg 3.. Rachal concentratlon dxstnbutlon accordmg to GorAy's theory. df = effective thickness of
‘the 11qu1d diffusion film, tga = (K ra/2Dg) (¢’ — c’¥).

"The GOLAY model is substantially more involved; the radial concentration
distribution presupposed in this model is shown schematically in Fig. 3. A hybrid
‘model is apparently at stake here — the rate of the mass transfer in the mobile phase
obeys the equation of diffusion while the rate of the mass transfer in the liquid phase is
described, similarly asin VAN DEEMTER’s model, by means of the partial mass-transfer
coefficient K. At the phase interface, two boundary condltlons apply. One of them
colhgates the concentrations in the mobile and in the sta. 1" ry phases at the interface

by the relation ¢'* = kc*, the other one describes the: ‘mass ﬂuxes at the interface by
the Fourier relatlon B

e

 Dgoc
2 —a?- 5— (¢,a,2 ) K p[c’ — ke(t,a,2)]

(27)
“which is a'nalogous to the condition described by eqn. 8. Hence, the exact solution of
_the GoLAY model would have to lead to an interdependence between both partial pro-
- cesses in the mass transfer The resultant independence of Ce and C is a consequence
" of the simplification of the model during the solution. The decisive step is undoubtedly
the substitution of eqn. 21 into eqn. 17a (in GoLAY’s notation) which implies the con-

centration field in the mobile phase to be independent of the rate of the mass transfer
1 in the statlonary phase.
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The concept of the mutual dependence of the mass transfer in both phases may
easily be applied also to packed columns. Let us turn back to eqn. 22, supplemented
now by the terms accounting for the variances due to longitudinal and eddy diffusion,

A — A4 + B/Pi + Ce'Pii + Cra + 2par(PYVC1Ce'Pa (28)
and compare it with the classical VAN DEEMTER equation

B = A + B/Pa + C¢’Pa + Cri ' (29)

Both equations may be divided by the average velocity of the mobile phase, #:

A)n = Aja + B'/Pu? + C¢'P + Cp + 2per(PYVCLCe'P (28a)
Ala = Aja + B’|Pa® + Ce’P + Cp (29a)
A
]
B_=CL+C'G$
7]
c, 4
3

Fig. 4. Scheme of the isolation of the Cj, and C¢’ coefficients according to the classical concepts
(egn. 20a).

In a region of higher flow velocities of the mobile phase, where the plate height is
dominated by the rate of the interphase solute-transfer, the two first members of the
right-hand sides in eqns. 28a and z9a may be neglected to a good approximation. In
compliance with the classical eqn. 29, one could easily isolate the Cz and C¢' coefficient

by plotting the ratio J24 /% against the mean column pressure P (cf. Fig. 4). On the other
hand, eqn. 28a, when neglecting the dependence of pgz, on P (for instance by intro-
ducing the mean value, pgz, within the given interval of the mean pressure P)
renders the curves resulting from the composition of the straight lines A /= Cg¢ 'P +
Cr, and the parabolas H/u = szLJCLCG P (Fig. 5).

The endeavour to express the C¢’ and Cz values from the measured data by the
classical relation 29 is equivalent to the seeking for the tangent or secant to the curves
given by eqn. 28a. Therefore, the C¢’ and Cy, coefficients obtained from HETDP versus
flow velocity data in virtue of the conventional concepts represent some apparent

values, (C¢')app and (Cr)app. Hence, when calculating with the tangent and neglecting
the first two members of the right-hand side of egn. 28a, one obtains

(CL)app = C1 + PGL\/chG P, : (30)
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x>

tg ¢ =(Cg) app

F

Fig. 5. Scheme of the isolation of the apparent C;, and C¢ coefficients according to the concept of the
interdependence between the gas and liquid mass-transfer terms.

where P, stands for the mean pressure determining the position of the tangent on the
curve given by eqn. 28a.
Hence, the obtained apparent value of Cz, (CL)upp, increases, on a given column,

with increasing mean pressure P, and with increasing C¢' (increasing gas phase
diffusion coefficient), which is in conformity with the experimental experience. To

illustrate the above account, Fig. 6 shows the plots of I?/u against P for octane with
hydrogen, nitrogen, and argon as the carrier gases. The column was 190 cm long,
packed with 1o wt. % of Apiezon L on Chezasorb (an equivalent of Chromosorb P) of
the particle diameter 0.08-0.1 mm and kept at a temperature of 100°.

Bed
0.03

cijrs

0.02

(C)app A
(CL) app N2

(C,)appH ) ) —
¢ o.oﬁ 2 6 P
[ata)

Fig. 6. Plot of & |® versus P for octanc chromatographed with A, N,, and H, carrier gases, illustrat-
ing the dependence of the apparent Cy, on the gas phase diffusion cocfficient.
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The slopes of the tangents to the curves, .renderin the apparent values of C¢/,
(C¢') by tl g1 § PP
¢ )app, are given by the relation

(Cc)app = C¢’ + m\/CLCG’/ﬁa (31)

Thus, the measured value of (C¢')app rises with increasing values of Cy, in compliance

with the papers by PURNELL AND PERRETT!S, and decreases with increasing P,, as
found by NovAK et al.1,

LIST OF SYMBOLS

¢ = solute concentration in the mobile phase, expressed by the mass of solute in a
unit volume of the empty column

¢’ = solute concentration in the stationary phase, expressed in the same units as
quoted with ¢

D¢ = diffusion coefficient of the solute in the mobile phase
D[, = diffusion coefficient of the solute in the stationary phase
#o = mobile phase forward flow velocity averaged over the void cross-sectional
area of the column
d(¢) = Dirac’s delta function
a = distance of the gas-liquid interface from the capillary axis
a, = internal radius of the capillary tube
% = partition ratio
v = volume of the gaseous phase per unit volume of the empty column
vy, = volume of the liquid phase per unit volume of the empty column
dr = (effective) thickness of the stationary liquid layer
Fi(k) = (1 + 6k + 11k?)/24(T + k)2

F (k) = k3/6(x + &)2

t,r,z = time, radius, and distance coordinates
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